Four Primes
There are four unknown prime numbers \(a,b,c,d\). You are given the values of the products: \(ab\) and \(bc\) and \(cd\). Your task is to determine the value of \(a+b+c+d\). For example, if \(ab=14\) and \(bc=6\) and \(cd=33\) then the only solution is \(a=7, b=2, c=3, d=11\) and so the answer would be \(a+b+c+d=7+2+3+11=23\).Part A | \(ab=\) 1679, \(bc=\) 437, \(cd=\) 2147. What is \(a+b+c+d\)? | |
---|---|---|
Part B | \(ab=\) 289626105619, \(bc=\) 429039650437, \(cd=\) 134197842017. | |
Part C | \(ab=\) 9924230848537907113490232026 \(bc=\) 9569803352783866555284669449 \(cd=\) 9940732613767440074616546364 |