Computation Workshop Solution Checker

Four Primes

There are four unknown prime numbers \(a,b,c,d\). You are given the values of the products: \(ab\) and \(bc\) and \(cd\). Your task is to determine the value of \(a+b+c+d\). For example, if \(ab=14\) and \(bc=6\) and \(cd=33\) then the only solution is \(a=7, b=2, c=3, d=11\) and so the answer would be \(a+b+c+d=7+2+3+11=23\).
Part A \(ab=\) 1679, \(bc=\) 437, \(cd=\) 2147. What is \(a+b+c+d\)?
Part B \(ab=\) 289626105619, \(bc=\) 429039650437, \(cd=\) 134197842017.
Part C \(ab=\) 992423084853790711349023202688646454111894545320268574266229,
\(bc=\) 956980335278386655528466944976628334778794612703832733966183,
\(cd=\) 994073261376744007461654636423577330810572537485993899025411. What is the remainder when \(a+b+c+d\) is divided by \((10^9+7)\)?