Recursively Defined Sequence
A sequence \((t(0), t(1), t(2), t(3), \ldots) = (2,1,5,13, \ldots)\) begins with \(t(0)=2\) and \(t(1)=1\). Then
- \(t(2) = t(1) + 2t(0)\),
- \(t(3) = t(2) + 2t(1) + 3t(0)\),
- \(t(4) = t(3) + 2t(2) + 3t(1) + 4t(0)\),
- \(\ldots\) and so on.
Part A | Determine the last \(9\) digits of \(t(2021)\). | |
---|---|---|
Part B | Determine the last \(9\) digits of \(t(2021^{2021})\). |